STRENGTH OF MATERIALS

PART I Elementary Theory and Problems

Br

S. TIMOSHENKO

Professor of Theoretical and Engineering Mechanics Stanford University

SECOND EDITION-TENTH PRINTING

D. VAN NOSTRAND COMPANY, Inc.

TORONTO

NEW YORK

LONDON

NEW YORK

D. Van Nostrand Company, Inc., 250 Fourth Avenue, New York 3

TORONTO

D. Van Nostrand Company, (Canada), Ltd., 228 Bloor Street, Toronto

LONDON

Macmillan & Company, Ltd., St. Martin's Street, London, W.C. 2

Copyright, 1930, 1940 by D. VAN NOSTRAND COMPANY, Inc.

All Rights Reserved This book, or any parts thereof, may not be reproduced in any form without written permission from the author and the publishers.

First Published, May 1930 Reprinted, March 1932, January 1936 February 1938

Second Edition, June 1940 Reprinted, October 1941, July 1942 January 1944, August 1944, May 1945 May 1946, February 1947, August 1947 August 1948

PRINTED IN THE UNITED STATES OF AMERICA BY LANCASTER PRESS, INC., LANCASTER, PA.

PREFACE TO THE SECOND EDITION

In preparing the second edition of this volume, an effort has been made to adapt the book to the teaching requirements of our engineering schools.

With this in view, a portion of the material of a more advanced character which was contained in the previous edition of this volume has been removed and will be included in the new edition of the second volume. At the same time, some portions of the book, which were only briefly discussed in the first edition, have been expanded with the intention of making the book easier to read for the beginner. For this reason, chapter II, dealing with combined stresses, has been entirely rewritten. Also, the portion of the book dealing with shearing force and bending moment diagrams has been expanded, and a considerable amount of material has been added to the discussion of deflection curves by the integration method. A discussion of column theory and its application has been included in chapter VIII, since this subject is usually required in undergraduate courses of strength of materials. Several additions have been made to chapter X dealing with the application of strain energy methods to the solution of statically indetermined problems. In various parts of the book there are many new problems which may be useful for class and home work.

Several changes in the notations have been made to conform to the requirements of American Standard Symbols for Mechanics of Solid Bodies recently adopted by The American Society of Mechanical Engineers.

It is hoped that with the changes made the book will be found more satisfactory for teaching the undergraduate course of strength of materials and that it will furnish a better foundation for the study of the more advanced material discussed in the second volume.

iii

S. Timoshenko

PALO ALTO, CALIFORNIA June 13, 1940

PREFACE TO THE FIRST EDITION

At the present time, a decided change is taking place in the attitude of designers towards the application of analytical methods in the solution of engineering problems. Design is no longer based principally upon empirical formulas. The importance of analytical methods combined with laboratory experiments in the solution of technical problems is becoming generally accepted.

Types of machines and structures are changing very rapidly, especially in the new fields of industry, and usually time does not permit the accumulation of the necessary empirical data. The size and cost of structures are constantly increasing, which consequently creates a severe demand for greater reliability in structures. The economical factor in design under the present conditions of competition is becoming of growing importance. The construction must be sufficiently strong and reliable, and yet it must be designed with the greatest possible saving in material. Under such conditions, the problem of a designer becomes extremely difficult. Reduction in weight involves an increase in working stresses, which can be safely allowed only on a basis of careful analysis of stress distribution in the structure and experimental investigation of the mechanical properties of the materials employed.

It is the aim of this book to present problems such that the student's attention will be focussed on the practical applications of the subject. If this is attained, and results, in some measure, in increased correlation between the studies of strength of materials and engineering design, an important forward step will have been made.

The book is divided into two volumes. The first volume contains principally material which is usually covered in required courses of strength of materials in our engineering

1

schools. The more advanced portions of the subject are of interest chiefly to graduate students and research engineers, and are incorporated in the second volume of the book. This contains also the new developments of practical importance in the field of strength of materials.

In writing the first volume of strength of materials, attention was given to simplifying all derivations as much as possible so that a student with the usual preparation in mathematics will be able to read it without difficulty. For example, in deriving the theory of the deflection curve, the *area moment method* was extensively used. In this manner, a considerable simplification was made in deriving the deflections of beams for various loading and supporting conditions. In discussing statically indeterminate systems, the *method of superposition* was applied, which proves very useful in treating such problems as continuous beams and frames. For explaining combined stresses and deriving principal stresses, use was made of the *Mohr's circle*, which represents a substantial simplification in the presentation of this portion of the theory.

Using these methods of simplifying the presentation, the author was able to condense the material and to discuss some problems of a more advanced character. For example, in discussing torsion, the twist of rectangular bars and of rolled sections, such as angles, channels, and I beams, is considered. The deformation and stress in helical springs are discussed in detail. In the theory of bending, the case of non-symmetrical cross sections is discussed, the center of twist is defined and explained, and the effect of shearing force on the deflection of beams is considered. The general theory of the bending of beams, the materials of which do not follow Hooke's law, is given and is applied in the bending of beams beyond the yielding point. The bending of reinforced concrete beams is given consideration. In discussing combinations of direct and bending stress, the effect of deflections on the bending moment is considered, and the limitation of the method of superposition is explained. In treating combined bending and torsion, the cases of rectangular and elliptical cross sections are discussed, and applications in the design of crankshafts are given. Considerable space in the book is devoted to methods for solving elasticity problems based on the consideration of the strain energy of elastic bodies. These methods are applied in discussing statically indeterminate systems. The stresses produced by impact are also discussed. All these problems of a more advanced character are printed in small type, and may be omitted during the first reading of the book.

The book is illustrated with a number of problems to which solutions are presented. In many cases, the problems are chosen so as to widen the field covered by the text and to illustrate the application of the theory in the solution of design problems. It is hoped that these problems will be of interest for teaching purposes, and also useful for designers.

The author takes this opportunity of thanking his friends who have assisted him by suggestions, reading of manuscript and proofs, particularly Messrs. W. M. Coates and L. H. Donnell, teachers of mathematics and mechanics in the Engineering College of the University of Michigan, and Mr. F. L. Everett of the Department of Engineering Research of the University of Michigan. He is indebted also to Mr. F. C. Wilharm for the preparation of drawings, to Mrs. E. D. Webster for the typing of the manuscript, and to the Van Nostrand Company for its care in the publication of the book.

S. Timoshenko

Ann Arbor, Michigan May 1, 1930

vii

NOTATIONS

$\sigma_x, \sigma_y, \sigma_z$ Normal stresses on planes perpendicular to x, y
and z axes.
σ_n Normal stress on plane perpendicular to direction
<i>n</i> .
$\sigma_{\mathbf{Y},\mathbf{P},\cdots}$. Normal stress at yield point.
σ_w Normal working stress
auShearing stress
$\tau_{xy}, \tau_{yz}, \tau_{zx}$. Shearing stresses parallel to x, y and z axes on the
planes perpendicular to y , z and x axes.
τ_w
δ
ϵ Unit elongation
$\epsilon_x, \epsilon_y, \epsilon_z, \ldots$ Unit elongations in x, y and z directions
γ Unit shear, weight per unit volume
E
G
μ Poisson's ratio
Δ Volume expansion
K
M_t
MBending moment in a beam
V
ACross sectional area
In I
to v and z aves
ky, k Radii of gyration corresponding to I I
I_{y} Polar moment of inertia
Z
C Torsional rigidity
Length of a bar span of a bar
P. O Concentrated forces
$t_{\rm t}$ Temperature thickness
······································

ix

NOTATIONS

Х

α Coefficient of thermal expansion, numerical	coef-
ficient	
UStrain energy	
wStrain energy per unit volume	
$h \dots \dots$ Depth of a beam, thickness of a plate	
qLoad per unit length	
ϕ, θ, \ldots Angles	
pPressure	
$D, d \dots$ Diameters	
<i>R</i> , <i>r</i> Radii	
WWeight, load	

001111110

C

+ ...

HAPTER	PAGE
I TENSION AND COMPRESSION WITHIN THE ELASTIC LIMIT	r
I. Elasticity	. 1
2. Hooke's Law	. 2
2. The Tensile Test Diagram	. 6
\mathbf{A} . Working Stress	. 7
c. Stress and Strain Produced in a Bar by its Ow	'n
Weight \ldots	. 14
6. Statically Indeterminate Problems in Tension an	d '
Compression	. 10
7. Initial and Thermal Stresses	. 25
8. Extension of a Circular Ring	. 20
5	,
II. ANALYSIS OF STRESS AND STRAIN	. 35
9. Variation of the Stress with the Orientation of th	ie 05
Cross Section for Simple Tension and Compre-	S-
sion	• 35
10. The Circle of Stress	. 38
11. Tension or Compression in Two Perpendicula	ır
Directions	. 41
. 12. The Circle of Stress for Combined Stresses	· 44
13. Principal Stresses	. 46
14. Analysis of Strain in the Case of Simple Tension .	. 50
15. Strain in the Case of Tension or Compression i	n
Two Perpendicular Directions	. 52
16. Pure Shear. Modulus in Shear	· 54
17. Working Stresses in Shear	. 58
18. Tension or Compression in Three Perpendicula	ır
Directions	. 61
III. SHEARING FORCE AND BENDING MOMENT	. 66
19. Types of Beams	. 66
20. Bending Moment and Shearing Force	. 68
21. Relation Between Bending Moment and Shearin	ıg
Force	· 72
22. Bending Moment and Shearing Force Diagrams .	· 74
IV STRESSES IN TRANSVERSALLY LOADED REAMS	88
22. Pure Bending	. 88
xi	

	24. Various Shapes of Cross Sections of Beams 97	VII
	25. General Case of Transversariy Loaded Beams . 102	
	20. Snearing Stresses in Denuing	
	27. Distribution of Shearing Stresses in the Case of a	• •
	Circular Cross Section	•
	28. Distribution of Shearing Stresses in I Beams 118	
	29. Principal Stresses in Bending	
	30. Stresses in Built-up Beams	
V.	Deflection of Transversally Loaded Beams 134	
	31. Differential Equation of the Deflection Curve 134	
	22. Bending of a Uniformly Loaded Beam 137	
	22 Deflection of a Simply Supported Beam Loaded	Ľ
	with a Concentrated Load	
	A Determination of Deflections by the use of the	
	34. Determination of Denections by the use of the	
	Denting Moment Diagram, Method of Super-	
	position	
	35. Deflection of a Cantilever Deam by the Area-	
	Moment Method	
	36. Deflection of a Simply Supported Beam by the	-
	Area-Moment Method	* <u>+</u>
	37. Deflection of Beams with Overhangs 162	
	38. The Deflection of Beams When the Loads Are Not	
	Parallel to One of the Two Principal Planes of	. •
	Bending	
	20 Effect of Shearing Force on the Deflection of	
	Beams 170	· · · · ·
	Deams.	.*
T 7 T	C DESTRUCTS DE SUS IN BENDING 177	
VI.	STATICALLY INDETERMINATE F ROBLEMS IN DENDING 1/5	
	40. Redundant Constraints	
	41. Beam Built-in at One End and Supported at the	1 .
	Other \ldots \ldots \ldots \ldots \ldots \ldots \ldots 178	
	42. Beam with Both Ends Built in	AP
	43. Frames	
	44. Beams on Three Supports	•
	45. Continuous Beams	
vir	BEAMS OF VARIABLE CROSS SECTION. BEAMS OF TWO	. 1
111.	MATERIALS 200	· ·]
	6 Beams of Variable Cross Section	
	- Beams of Two Different Materials 216	
	47. Deallis of 1 wo Different materials	A 11
	48. Reinforced-Concrete Beams 224	AU
То	access for fully document please	click here
	-	

٠

CONTENTS

VIII.	COMBINED BENDING AND TENSION OR COMPRESSION;	
1 22	THEORY OF COLUMNS	226
	co. Bending Accompanied by Compression or Tension .	226
	1. Eccentric Loading of a Short Strut	230
	22. The Core of a Section	235
	53. Eccentric Compression of a Slender Column	239
	r4. Critical Load	244
	c. Critical Stress; Design of Columns	249
	6. Design of Columns on Basis of Assumed Inaccura-	
		255
	77. Empirical Formulas for Column Design	258
	3/. <u>Zaipitta a</u>	2
IX.	TORSION AND COMBINED BENDING AND TORSION	261
	58. Torsion of a Circular Shaft	261
	59. Torsion of a Hollow Shaft	268
	60. The Shaft of Rectangular Cross Section	269
•	61. Helical Spring, Close Coiled	271
	62. Combined Bending and Twist in Circular Shafts .	276
		•
Х.	Energy of Strain	281
	63. Elastic Strain Energy in Tension	281
	64. Tension Produced by Impact.	285
	65. Elastic Strain Energy in Shear and Twist	292
•	66. Elastic Strain Energy in Bending	296
	67. Bending Produced by Impact	300
	68. The General Expression for Strain Energy	305
	69. The Theorem of Castigliano	308
	70. Application of Castigliano Theorem in Solution of	
	Statically Indeterminate Problems	320
	71. The Reciprocal Theorem	330
	72. Exceptional Cases	339
APPE	NDIX	
т	MOMENTS OF INERTIA OF PLANE FIGURES	343
1.	The Moment of Inertia of a Place Area with Respect to	0.40
	an Axis in Its Plane	343
11.	Polar Moment of Inertia of a Plane Area	345
	Del Classic Dringing Arres	34/
10.	. Product of Inertia, Principal Axes	340
۷.	. Unange of Direction of Axis. Determination of the	057
	Principal Axes	551
AUTH	OR INDEX	355
SUBJ	ECT INDEX	357

xiii